Pelletron Corporation

The Company

Discover Bulkmatology™
The Nature of Bulk Material Handling
Pelletron Corporation

The Company

Specialists in Pneumatic Conveying and DeDusting Technology

Established 1987
Headquartered in Lancaster, PA USA
Pelletroneurope GmbH in Germany
Global Sales & Service Network
Heinz Schneider, President & CEO
Paul Wagner, Vice President
Peter Siebentritt, Managing Director pelletroneurope GmbH
The new Pelletron building in Lancaster
Increasing profitability, efficiency and quality of the end products of our customers by improving the their Bulk Handling Processes
Pelletron Corporation

The Program

Pneumatic Conveying Systems
Pneumatic Conveying Components
DeDusting Systems
• FREE Product Testing
• Wet and Dry Fines Analysis with PPM Profiles
• Toll Cleaning
• Product Quality Assessment and Documentation
• System Analysis and Optimization
• Field Service
• Spare Parts & Re-Furbishing
• DeDuster® Leasing
Pelletron Corporation

Research & Development

Comparison tests with long radius elbows versus Pellbows®

Pneumatic conveying and dedusting test facilities
Pneumatic Conveying
Systems technology
Modern solution for production of the cleanest possible resins

- The resin should have a remaining dust content <50PPM in the bag.
- Using the new ASTM Standard D-7486-08 method instead of the FEM 2482 Standard. The FEM defines dust content in three classes: Type A from 63µ to 500µ, Type B from 45µ to 500µ and Type C from 20µ to 500µ. The ASTM measures the dust from 1.6micron to 500micron.
- Selection of the conveying system that generates a low dust content which can be removed easily.
- Pellcon3-the new conveying process provides the
- The pellcon3 components STRANDPHASE™, Pellbow®, DeDuster®
Pneumatic Conveying

Systems technology

The traditional material handling concept:
Dilute Phase Conveying was the common standard technology in the past

typical conveying capacities < 30t/hr

EXTRUDER → BLENDER → ELUTRIATOR
(dust removal) → STORAGE SILOS → BAGGING TRUCK LOADING
Dilute Phase conveying characteristics:

- High gas velocities: \(v = 25-40 \, \text{m/s} \)
- Low product to air ratio: range 1-10 to 1
- Low to medium pressure drop: \(p = 0.1-1.0 \, \text{bar} \)
- Special pipe support requirements: No

Product completely dispersed in gas flow
Profile of Dilute Phase Pneumatic Conveying System

Dilute phase characteristics:
• High dust volume
• Mostly coarse dust long and short streamers, depending on the product
• Dust surges at the end of the unloading process

Investment costs: Low

Dust removal: Difficult because of high dust volume and streamers

Product losses in form of dust: High
Dense Phase, Plug or Slow Motion Conveying

Product moves in plugs or dunes throughout the pipe

- Low gas velocities: \(v = 2-10 \text{ m/s} \)
- High product to air ratio: range 15-50 to 1
- High pressure drop: \(p = 0.5 - 3.5 \text{ bar} \)
- Special pipe support requirements: Yes
Profile of Dense Phase Pneumatic Conveying Systems

Slow Motion Dense Phase
- Low dust volume
- Very fine dust, but high electrostatic charged dust, sticks to the pellet surface
- No streamers through conveying
- Streamer formation caused by purging

Investment costs: High

Dust removal: Very difficult to remove the electrostatic charged micro dust

Product losses in form of dust: Low
Pneumatic Conveying
Systems technology

Typical material handling concept for higher capacities

Dense or dilute phase conveying 40 - 80t/hr

Use of expensive pipe supports for dense phase lines

Use of dense phase conveying after elutriator provided no satisfying results

EXTRUDER → BLENDER

ELUTRIATOR (dust removal)

STORAGE SILOS

BAGGING TRUCK LOADING
Experience summary for LARGE CAPACITY slow motion dense phase systems

- High investment costs, due to complex control systems
- Special enforced pipe support system and plug splitters
- High maintenance cost due to higher complexity and support maintenance
- Creation of very fine micro dust in conveying lines.
- High electrostatic charged dust that sticks to the pellets.
- Dust accumulates in silos and requires additional installation of dust removal equipment under the silos to meet the industry quality standards
- Potential for creation of streamers during purge cycle
- Very sensitive and limited in reference to variable capacity requirements (turn-down capabilities, etc.)

Dense Phase - Not the best solution for high conveying capacities
The Guide for a New Approach

- Economical, reliable and **SIMPLE** pneumatic transfer technology
- Reasonable investment costs
- End product with low dust content and free of streamers
- Easy operation
- Low maintenance costs
Phase (State) Diagram for Pneumatic Conveying

- **Slug conveying**
- **Strand conveying**
- **Dilute conveying**
- **Unstable region**
Characteristics of Different Conveying Modes

<table>
<thead>
<tr>
<th></th>
<th>Dilute Phase</th>
<th>Strand Phase</th>
<th>Dense Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product range</td>
<td>wide</td>
<td>wide</td>
<td>narrow</td>
</tr>
<tr>
<td>Gas velocity</td>
<td>high</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td>Product/gas ratio</td>
<td>low</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Product dispersed</td>
<td>yes</td>
<td>partly</td>
<td>no</td>
</tr>
<tr>
<td>Pressure loss / m (=D)</td>
<td>medium</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Pressure range typical</td>
<td>blower</td>
<td>Up to 2bar</td>
<td>3 – 6bar screw</td>
</tr>
<tr>
<td>Air management system</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Pipe size</td>
<td>medium</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>high</td>
<td>small</td>
<td>medium</td>
</tr>
<tr>
<td>Installed cost</td>
<td>low</td>
<td>medium to low</td>
<td>high</td>
</tr>
</tbody>
</table>
The New Approach: Systems technology

Patented pending in Korea 10-2011-0074320

The New Thinking In Pneumatic Conveying

STRANDPHASE® Pellbow® DeDuster®
STRANDPHASE™ conveying = component one

Product partially dispersed in gas flow, partially moving at higher concentration at bottom of horizontal and evenly dispersed in vertical runs

Optimized gas velocity: \(v = 15-25 \) m/s
Medium product to air ratio: range 5-20 to 1
Medium to high pressure drop: \(p = 0.5-2.0 \) bar
Special pipe support requirements: No
Profile of STRANDPHASE™ Conveying Systems

Low to Moderate dust volume
Mostly coarse dust some short streamers, depending on the product

Investment costs: Low to Moderate
Dust removal: Easy with DeDuster®
Product losses in form of dust: Low to Moderate
STRANDPHASE™ conveying Advantages

- Easy and simple system arrangement (blower, cooler, rotary valve and filter)
- Easy and flexible to operate
- No special air management or controls necessary
- No dynamic forces
- No need for special pipe supports
- Less maintenance
- Smaller pipe diameters compared to slow motion dense phase design
- Moderate levels of coarse, easy to remove dust and streamers
- High system flexibility in reference to capacity turn-down ratios
- Moderate capital investment costs
NEW pellcon3™ Process

STRANDPHASE™ conveying

EXTRUDER → BLENDER → SILOS

Use of Pellbows in conveying lines = component two

DEDUSTER = Component three

BAGGING
TRUCK
LOADING
The **NEW** pellcon3™ System Concept

Customer Requirement:
Highest quality end product with dust levels well below 50ppm, no streamers.

Pelletron Solution:
The pellcon3™ concept with STRANDPHASE® conveying,
Pellbow® and DeDuster®
Typical modern big bag loading facility.
STRANDPHASE® Conveying, Pellbows®,
DeDusting system
CCD closed loop with one fan, cyclone and inline filter
pellcon3 conveying system for 60t/h
Conveying Data Comparison STRANDPHASE™- Dense Phase

<table>
<thead>
<tr>
<th></th>
<th>STRANDPHASE™</th>
<th>SLOW MOTION DENSE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>PET pellets</td>
<td></td>
</tr>
<tr>
<td>Bulk Density</td>
<td>640 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>15000 to 30000 kg/hr</td>
<td>25:1</td>
</tr>
<tr>
<td>Distance</td>
<td>122 m total (31 m vertical, 10 x 90° elbows)</td>
<td></td>
</tr>
<tr>
<td>Pipe Diameter</td>
<td>DN 150</td>
<td>DN 200</td>
</tr>
<tr>
<td>Conveying Air Flow</td>
<td>35 M³/Min</td>
<td>21.2 M³/Min</td>
</tr>
<tr>
<td>Purge Air Flow</td>
<td>N/A</td>
<td>45 M³/Min</td>
</tr>
<tr>
<td>Conveying Pressure</td>
<td>0.83 bar</td>
<td>2.48 bar</td>
</tr>
<tr>
<td>Product/Air Ratio</td>
<td>12:1</td>
<td>25:1</td>
</tr>
</tbody>
</table>
Conveying Equipment Comparison STRANDPHASE™- Dense Phase

<table>
<thead>
<tr>
<th></th>
<th>STRANDPHASE™</th>
<th>SLOW MOTION DENSE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Valves</td>
<td>Standard Design Up to 1.52 bar</td>
<td>High Pressure Up to 3.1 bar</td>
</tr>
<tr>
<td>Conveying Air Source</td>
<td>Roots Type Blowers</td>
<td>Screw Compressor or Compressed Air Network</td>
</tr>
<tr>
<td>Pipes</td>
<td>Standard Surface</td>
<td>Smooth Surface</td>
</tr>
<tr>
<td>Elbows</td>
<td>Pellbows®</td>
<td>5D or 10D Elbows</td>
</tr>
<tr>
<td>Cleaning equipment</td>
<td>DeDusters®</td>
<td>DeDusters®</td>
</tr>
</tbody>
</table>
Conveying Technology Recommendations for Plastic Pellets

<table>
<thead>
<tr>
<th>CONVEYING LINE SIZE AND DISTANCE</th>
<th><DN150 & <150 m</th>
<th><DN150 & >150 m</th>
<th>>DN150 & <150 m</th>
<th>>DN150 & >150 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVEYING TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSE PHASE conveying</td>
<td>✅</td>
<td>✅</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>STRANDPHASE™ conveying</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>
Pneumatic Conveying Systems

Attrition Test Results

COMPARISON BETWEEN SLOW MOTION AND STRANDPHASE™ CONVEYING:

Dust measuring method ASTM 1.6 to 500micron

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Batch No.</th>
<th>Product</th>
<th>Total Conv. Rate to Air</th>
<th>Product</th>
<th>Total Term. Rate</th>
<th>Attrition Content out of system pipe</th>
<th>Attrition Content in product</th>
<th>Dust Content in original product</th>
<th>Total Increase</th>
<th>Total Increase per 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>136</td>
<td>30-35</td>
<td>30</td>
<td>2000</td>
<td>4.6 to 1</td>
<td>200.2</td>
<td>13.76</td>
<td>237.36</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>1b</td>
<td>136</td>
<td>30-35</td>
<td>30</td>
<td>2000</td>
<td>4.6 to 1</td>
<td>200.2</td>
<td>16.3</td>
<td>90.3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1c</td>
<td>136</td>
<td>30-35</td>
<td>30</td>
<td>2000</td>
<td>18 to 1</td>
<td>380.5</td>
<td>5.5</td>
<td>6.16</td>
<td>37.83</td>
<td>58</td>
</tr>
<tr>
<td>2a</td>
<td>136</td>
<td>30-35</td>
<td>30</td>
<td>2000</td>
<td>4.6 to 1</td>
<td>200.2</td>
<td>11.93</td>
<td>79.93</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Test 1a: fresh 136 kg sample Metalocene, STRANDPHASE™ conveying, 28m short loop, 4 radius elbows
Test 1b: fresh 136 kg sample Metalocene, STRANDPHASE™ conveying, 28m short loop, 3 Pellbows, 1 radius elbow
Test 1c: fresh 136 kg sample Metalocene, Dense Phase conveying, 52m full loop, 4 radius elbows
Test 2a: fresh 136 kg sample LDPE, STRANDPHASE™ conveying, 28m short loop, 3 Pellbows, 1 radius elbow
Conclusion

- Avoid using dilute phase conveying systems
- Use Dense phase systems for small pipe diameters and/or short distances only.
- Use the pellcon3 process for larger pipe diameters and longer distances.
- Use the new ASTM method for dust content measurement.
- Use always a DeDusters under the storage silo before packaging.
- Avoid using elutriators
The Pellbow®, a specially designed and patented pipe elbow
For fines reduction and streamer elimination
Modern dust removal technology

- Why dust and streamers are bad
- Formation of dust and streamers
- Traditional dust removal systems
- The Pelletron solution
- Special DeDusters
- DeDuster® applications
- Installation examples
Why dust and streamers are bad..........

Pelletron’s DeDusting Technology

Formation of dust & streamers
Melted streamers stuck at the throat of a molding machine

Streamer formation in a long radius bend
Pelletron’s DeDusting Technology

Formation of Dust and Streamers

Typical pellets with small dust particles on the surface, attracted by electro-static charging
Pelletron’s DeDusting Technology

Formation of Dust and Streamers
Influence of velocity

Product: LDPE, ambient temperature

Fines Increase (ppm per 100m)

Conveying Velocity in m/s

In Pelletron’s DeDusting Technology, we observe a significant increase in fines with an increase in the conveying velocity. The graph shows a clear trend where the Fines Increase (ppm per 100m) rises sharply with higher conveying velocities, indicating the need for better dust control measures at higher velocities.
Effect of Elbow Design

Design
- Long Radius Elbows
- Dilute Phase Conveying

Impact
- High Frictional Forces
- Wall temperature increase
Disadvantages of elutriators

- Elutriator builds very high
- Installed at the end of the conveying line before the storage silos
- After cleaning, material needs to be distributed to the storage silos that generates new fine dust
- Does not remove electrostatically dust attracted to the pellet surface
- Does not remove long streamers and “birds nests”
- Cannot handle dust surges
- High investment costs
Dust and streamer removal solutions

Elutriator features:
- Cleans coarse dust
- Removes short streamers
- Builds very high
- Located at the end of a conveying line. Cannot be installed under a silo.
- Best cleaning range from 80 to 100PPM
The pelletron Solution – the DeDuster®
Removes Dust And Streamers - All in ONE Machine

XP360 DeDuster
cleaning 36 T/H with PE while loading trucks

Split flow inlet directs product evenly across wash decks
Pelletron’s DeDusting Technology

DeDuster® design
The Pelletron DeDuster® working principle consists of three (3) patented features:

- Magnetic Flux Field Coil
- Wash Deck
- Venturi Zone

1. Magnetic Flux Field Coil
2. Primary Air Wash Deck
3. Venturi Chamber with By-Pass Air Velocity Control
4. Dusty Air to Filter Separator
5. Secondary Air Wash Deck
6. Secondary Flux Field Generator
The Magnetic Flux Field:

When charged particles enter into the Magnetic Flux Field, “Lorentz Force” takes place and weaken the Static Bond between plastic pellet and fine dust/ streamer. In combination with the air flow, micro-fine particles attracted to the pellet surfaces can be removed.
Patented Wash Decks

- Positive pressure used to provide cleaning air stream
- Unique slot and hole design provides effective streamer removal
- Not affected by “spikes”

Patented Venturi Zone

- Adjustable plate to increase or decrease air flow
- Adjustable by-pass air to increase or decrease air flow.
- Streamers and birds nests will be removed in this zone
Pelletron’s DeDusting Technology

DeDuster Flow rates

<table>
<thead>
<tr>
<th>P - Series DeDuster®</th>
<th>XP - Series DeDuster®</th>
</tr>
</thead>
<tbody>
<tr>
<td>traditional low height design</td>
<td>X-tra low height & energy consumption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>deduster type</th>
<th>capacity range in lbs/h</th>
<th>capacity range in kg/h</th>
<th>deduster type</th>
<th>capacity range in lbs/h</th>
<th>capacity range in kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>50 - 150</td>
<td>20 - 75</td>
<td>xp5</td>
<td>650 - 1100</td>
<td>300 - 500</td>
</tr>
<tr>
<td>p5</td>
<td>100 - 600</td>
<td>50 - 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p10</td>
<td>500 - 1,200</td>
<td>250 - 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p30</td>
<td>1,000 - 3,500</td>
<td>600 - 1,600</td>
<td>xp15</td>
<td>1,000 - 3,500</td>
<td>600 - 1,600</td>
</tr>
<tr>
<td>p50</td>
<td>3,000 - 5,500</td>
<td>1,500 - 2,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p80</td>
<td>5,000 - 9,000</td>
<td>2,300 - 4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p120</td>
<td>8,000 - 14,000</td>
<td>3,500 - 6,500</td>
<td>xp45</td>
<td>8,000 - 11,000</td>
<td>3,500 - 5,000</td>
</tr>
<tr>
<td>p200</td>
<td>12,000 - 22,000</td>
<td>5,500 - 10,000</td>
<td>xp90</td>
<td>12,000 - 22,000</td>
<td>5,500 - 10,000</td>
</tr>
<tr>
<td>p400</td>
<td>20,000 - 45,000</td>
<td>9,000 - 20,000</td>
<td>xp180</td>
<td>20,000 - 45,000</td>
<td>9,000 - 20,000</td>
</tr>
<tr>
<td>p600</td>
<td>40,000 - 65,000</td>
<td>18,000 - 30,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p800</td>
<td>60,000 - 90,000</td>
<td>27,000 - 40,000</td>
<td>xp360</td>
<td>60,000 - 90,000</td>
<td>27,000 - 40,000</td>
</tr>
<tr>
<td>p1200</td>
<td>80,000 - 130,000</td>
<td>36,000 - 60,000</td>
<td>xp540</td>
<td>80,000 - 130,000</td>
<td>36,000 - 60,000</td>
</tr>
<tr>
<td>p2000</td>
<td>120,000 - 220,000</td>
<td>54,000 - 100,000</td>
<td>xp720</td>
<td>120,000 - 180,000</td>
<td>54,000 - 80,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xp900</td>
<td>150,000 - 220,000</td>
<td>70,000 - 100,000</td>
</tr>
</tbody>
</table>

Remark: The selection of the DeDuster depends on the bulk density of the product to be cleaned, the shape of the pellets and the type and quantity of the fines.
Pelletron’s DeDusting Technology

DeDuster® design

Pelletron P-series DeDuster®

The Advantages

- Very compact, For P600 (30T/H) the flange-to-flange height is only 1,219mm
- Effectively removes fine dust and streamers
- Easy to install
- Easy to maintain
- Low investment cost
XP-Series Features

50% height reduction:
DeDusters height is cut in half to reduce the installation height

100% increase of the cleaning space:
Cleaning decks are doubled to increase the cleaning efficiency and throughput.

New air boosters:
Air boosters provide accurate flow control for maximum cleaning efficiency.

High dust air outlet
The newly designed dust outlet reduces the carry over to an absolute minimum.

Energy consumption
20%-30% less fan air consumption compared to P-series
Pelletron developed a new round patented DeDuster series, the RC (Round CentraCone). The RC-DeDuster® is available in various sizes. Special features are:

- Low height at increased capacity
- Less energy consumption.
Pelletron’s DeDusting Technology

DeDuster® design

Pelletron Corporation
Pelletron’s DeDusting Technology

Applications

Three P1200 DeDusters, 60T/H Capacity in a PET Loading Station
Mobile XP360 DeDuster® for 36t/h capacity, installed in silo farm for truck loading.
Pelletron’s DeDusting Technology

Applications

Mobile XP180 DeDuster® for 18t/h capacity, installed on top of a bagging machine
Closed Loop System CCD with Cyclone and Inline Filter

- Wash air fan
- Inline Filter
- Rotary Valve
- DeDuster
- CCD stand + Dust drum
- Cyclone
Pelletron’s DeDusting Technology

Installation examples

Open Loop System with Bag House Filter

1. Inlet Filter
2. Wash Air Fan
3. Damper
4. Electrical Control Box
5. DeDuster
6. Fresh air inlet
7. Dust Collector
8. Exhaust Fan
9. Air outlet damper
10. Rotary valve
11. Inlet hopper or silo
Closed Loop System with Bag House Filter

4. Electrical Control Box
5. DeDuster
7. Dust Collector (Bag House)
8. Exhaust Fan
9. Outlet Damper
10. Rotary Valve
11. Inlet Hopper
Pelletron components

The component program
Medium and high pressure rotary valves (patent in Korea 10-2010-0023724 & 30-0598505)

Applications:
• Suitable for granules and pellets
• For gravity discharge and metering
• For pneumatic conveying systems
• GRM series for differential pressure up to 1.5 bar
• GRM valve with 10 vanes
• GRH series for differential pressure up to 3.5 bar
• GRH series valve with 12 vanes
• Capacities from 5 to 100t/h
Pelletron components

Rotary Valves

Features:

• Anti shearing device (patented) for gentle product handling
• Integrated leakage air vent for improved filling efficiency
• Heavy duty housing and bearing support for minimized rotor tolerance
• Closed end rotor
• Double lip seal
Rotary valves are available for capacities of more than 100t/hr and technology proven in many plants.

Rotary valves are available for:

- **Medium pressure application** up to 1.5 bar
- **High pressure application** up to 3.5 bar

The high range of design pressures allows the transport of larger capacities and / or longer conveying distances.
Pelletron components

Diverter Valves

<table>
<thead>
<tr>
<th>Size / Material</th>
<th>Use of Application</th>
<th>Rotating Angle</th>
<th>Pressure Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 50 to DN 300</td>
<td>Powder & Pellet Conveying / Gravity Feeding</td>
<td>45°, 90°, 135°</td>
<td>up to 6 bar</td>
</tr>
<tr>
<td>Stainless Steel/Aluminum Alloy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 75 to DN 300</td>
<td>Pellet Conveying / Gravity Feeding</td>
<td>45°</td>
<td>up to 4 bar</td>
</tr>
<tr>
<td>Stainless Steel/Aluminum Alloy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 50 to DN 500</td>
<td>Powder & Pellet Gravity Feeding</td>
<td>30°, 45°, 60°, 90°</td>
<td>up to 0.2 bar</td>
</tr>
<tr>
<td>Carbon Steel/ Stainless Steel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use of Application
- Powder & Pilet Conveying / Gravity Feeding
- Pellet Conveying / Gravity Feeding
- Powder & Pellet Gravity Feeding
Diverter Valve DVP

Application:
• Suitable for granules and pellets
• For distributing or merging of product flow
• For differential pressure up to 4.0 bar

For Pneumatic and Gravity Applications

Diverter Valve DVP
Pelletron components

Diverter Valves

Diverter Valve
GDV Animation
Diverter Valve PDV

- Application:
- Suitable for powders and pellets
- For distributing or merging of product flow
- For differential pressure up to 6.0 bar
Pelletron components

Diverter Valves

Diverter valve
PDV Animation